脓毒症相关性脑病老年小鼠的脑转录组分析Brain transcriptome analysis of old sepsis-associated encephalopathy mice
徐震亚,郭铁,徐娜,李宏宾,冯敏,孙荣青
摘要(Abstract):
目的分析老年脓毒症相关性脑病小鼠与成年脓毒症相关性脑病小鼠基因表达的差异。方法对GEO数据库中数据集GSE3253进GEO2R基因表达分析,筛选出差异表达基因;使用DAVID在线工具分别对上调和下调的差异表达基因进行基因本体论和KEGG通路的富集分析;使用STRING在线工具对差异表达基因进行蛋白互作网络构建。结果通过差异表达基因的筛选,共筛选到305个DEGs,其中上调DEGs为157个,下调DEGs为148个。通过GO富集分析,在BP分类中上调的DEGs富集到13个BPs,集中在细胞的分化、发育以及对应激的反应等,下调的DEGs富集到11个BPs,集中在离子转运、凋亡的调控、对脂多糖的反应等。在CC分类中,上调的DEGs富集到3个CCs,集中在细胞质、胞外区域,下调的DEGs富集到6个CCs,集中在胞核、胞膜和胞外区域。在MF分类中,上调的DEGs富集到3个MFs,集中在代谢相关的功能,下调的DEGs富集到8个MFs,集中离子通道活性、激素活性相关功能。通过KEGG通路富集分析,上调的DEGs富集到4个通路,包括mmu05218:Melanoma(P=0.02);mmu04015:Rap1 signaling pathway(P=0.03);mmu04014:Ras signaling pathway(P=0.04);mmu05200:Pathways in cancer(P=0.04)。下调的DEGs富集到3个通路,包括mmu05032:Morphine addiction(P=0.01);mmu04060:Cytokine-cytokine receptor interaction(P=0.03);mmu04721:Synaptic vesicle cycle(P=0.04)。通过PPI蛋白互作分析发现两个主要的蛋白互作网络,Gngt1、Sucnr1、Bdkrb2、Exo1、Cdk1是这两个互作网络中的关键基因。结论炎症和血脑屏障的破坏在老年脓毒症相关性脑病的发病中起关键作用,Gngt1、Sucnr1、Bdkrb2、Exo1、Cdk1基因可能在老年脓毒症相关性脑病发病过程中具有重要作用。
关键词(KeyWords): 脓毒症;脓毒症相关性脑病;基因表达综合数据库;转录组;生物信息学分析
基金项目(Foundation): 河南省教育厅重点科研项目(编号:19A320009)
作者(Author): 徐震亚,郭铁,徐娜,李宏宾,冯敏,孙荣青
参考文献(References):
- [1] GOFTON T E,YOUNG G B.Sepsis-associated encephalopathy[J].Nat Rev Neurol,2012,8(10):557-66.DOI:10.1038/nrneurol.2012.183.
- [2] LUITSE M J,VAN ASCH C J,KLIJN C J.Deep coma and diffuse white matter abnormalities caused by sepsis-associated encephalopathy[J].Lancet,2013,381(9884):2222.DOI:10.1016/S0140-6736(13)60682-0.
- [3] ZHANG L N,WANG X T,AI Y H,et al.Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients:2008-2011[J].Chin Med J (Engl),2012,125(5):828-31.DOI:10.3760/cma.j.issn.0366-6999.2012.05.018.
- [4] SONNEVILLE R,DE MONTMOLLIN E,POUJADE J,et al.Potentially modifiable factors contributing to sepsis-associated encephalopathy[J].Intensive Care Med,2017,43(8):1075-1084.DOI:10.1007/s00134-017-4807-z.
- [5] HAMASAKI M Y,SEVERINO P,PUGA R D,et al.Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions[J].Inflammation,2019,42(3):1023-1031.DOI:10.1007/s10753-019-00964-9.
- [6] SHARSHAR T,POLITO A,CHECINSKI A,et al.Septic-associated encephalopathy--everything starts at a microlevel[J].Crit Care,2010,14(5):199.DOI:10.1186/cc9254.
- [7] GODBOUT J P,CHEN J,ABRAHAM J,et al.Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system[J].FASEB J,2005,19(10):1329-31.DOI:10.1096/fj.05-3776fje.
- [8] SUN W,PEI L,LIANG Z.mRNA and Long Non-coding RNA Expression Profiles in Rats Reveal Inflammatory Features in Sepsis-Associated Encephalopathy[J].Neurochem Res,2017,42(11):3199-3219.DOI:10.1007/s11064-017-2357-y.
- [9] ANDERSON S T,COMMINS S,MOYNAGH P N,et al.Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse[J].Brain Behav Immun,2015,43:98-109.DOI:10.1016/j.bbi.2014.07.007.
- [10] BARRETT T,WILHITE S E,LEDOUX P,et al.NCBI GEO:archive for functional genomics data sets--update[J].Nucleic Acids Res,2013,41(Database issue):D991-5.DOI:10.1093/nar/gks1193.
- [11] LIU J,HAN H,FAN Z,et al.AZGP1 inhibits soft tissue sarcoma cells invasion and migration[J].BMC Cancer,2018,18(1):89.DOI:10.1186/s12885-017-3962-5.
- [12] JIA Y,QIN Q,FANG C P,et al.UVB induces apoptosis via downregulation of CALML3-dependent JNK1/2 and ERK1/2 pathways in cataract[J].Int J Mol Med,2018,41(5):3041-3050.DOI:10.3892/ijmm.2018.3478.
- [13] MEAD T J,MCCULLOCH D R,HO J C,et al.The metalloproteinase-proteoglycans ADAMTS7 and ADAMTS12 provide an innate,tendon-specific protective mechanism against heterotopic ossification[J].JCI Insight,2018,3(7):e92941.DOI:10.1172/jci.insight.92941.
- [14] BIGGS C M,KELES S,CHATILA T A.DOCK8 deficiency:Insights into pathophysiology,clinical features and management[J].Clin Immunol,2017,181:75-82.DOI:10.1016/j.clim.2017.06.003.
- [15] CHEN H,LEUNG T,GIGER K E,et al.Expression of the G protein gammaT1 subunit during zebrafish development[J].Gene Expr Patterns,2007,7(5):574-83.DOI:10.1016/j.modgep.2007.01.003.
- [16] SADDALA M S,LENNIKOV A.Proteomics reveals ablation of PlGF increases antioxidant and neuroprotective proteins in the diabetic mouse retina[J].Sci Rep,2018,8(1):16728.DOI:10.1038/s41598-018-34955-x.
- [17] ALSALEEM M,TOSS M S.The molecular mechanisms underlying reduced E-cadherin expression in invasive ductal carcinoma of the breast:high throughput analysis of large cohorts[J].Mod Pathol,2019,32(7):967-976.DOI:10.1038/s41379-019-0209-9.
- [18] KEIRAN N,CEPERUELO-MALLAFRé V,CALVO E,et al.SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity[J].Nat Immunol,2019,20(5):581-592.DOI:10.1038/s41590-019-0372-7.
- [19] MILLS E,O'NEILL L A.Succinate:a metabolic signal in inflammation[J].Trends Cell Biol,2014,24(5):313-20.DOI:10.1016/j.tcb.2013.11.008.
- [20] GILISSEN J,JOURET F,PIROTTE B,et al.Insight into SUCNR1 (GPR91) structure and function[J].Pharmacol Ther,2016,159:56-65.DOI:10.1016/j.pharmthera.2016.01.008.
- [21] LUKYANOVA L D,KIROVA Y I,GERMANOVA E L.Specific Features of Immediate Expression of Succinate-Dependent Receptor GPR91 in Tissues during Hypoxia[J].Bull Exp Biol Med,2016,160(6):742-7.DOI:10.1007/s10517-016-3299-0.
- [22] C?Té J,SAVARD M,BOVENZI V,et al.Selective tumor blood-brain barrier opening with the kinin B2 receptor agonist[Phe(8)psi(CH(2)NH)Arg(9)]-BK in a F98 glioma rat model:an MRI study[J].Neuropeptides,2010,44(2):177-85.DOI:10.1016/j.npep.2009.12.009.
- [23] FIELDS J,GHORPADE A.C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes[J].J Neuroinflammation,2012,9:177.DOI:10.1186/1742-2094-9-177.
- [24] MA J X,WANG D Z,WARD D C,et al.Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B2 receptor[J].Genomics,1994,23(2):362-9.DOI:10.1006/geno.1994.1512.
- [25] KEIJZERS G,BAKULA D,PETR M A,et al.Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer[J].Int J Mol Sci,2018,20(1):74.DOI:10.3390/ijms20010074.
- [26] MARLIER Q,JIBASSIA F,VERTENEUIL S,et al.Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death[J].Cell Death Discov,2018,4:43.DOI:10.1038/s41420-018-0044-7.
- [27] KEIJZERS G,BOHR V A,RASMUSSEN L J.Human exonuclease 1 (EXO1) activity characterization and its function on flap structures[J].Biosci Rep,2015,35(3):e00206.DOI:10.1042/BSR20150058.
- [28] TOMIMATSU N,MUKHERJEE B,HARRIS J L,et al.DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair[J].J Biol Chem,2017,292(26):10779-10790.DOI:10.1074/jbc.M116.772475.
- [29] MARLIER Q,JIBASSIA F,VERTENEUIL S,et al.Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death[J].Cell Death Discov,2018,4:43.DOI:10.1038/s41420-018-0044-7.
- [30] RADAK D,KATSIKI N,RESANOVIC I,et al.Apoptosis and Acute Brain Ischemia in Ischemic Stroke[J].Curr Vasc Pharmacol,2017,15(2):115-122.DOI:10.2174/1570161115666161104095522.
- [31] GUAN X,LI X,YANG X,et al.The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation[J].Life Sci,2019,235:116795.DOI:10.1016/j.lfs.2019.116795.