胶原-壳聚糖支架对脊髓损伤后运动功能恢复作用的实验研究Study on the effect of collagen-chitosan scaffolds on motor function recovery after spinal cord injury
朱旭;于国渊;杨华堂;张宁;王喜旺;王晶;王如科;
摘要(Abstract):
目的探讨胶原-壳聚糖支架对脊髓损伤(spinal cord injury,SCI)后运动功能恢复作用,为组织工程学在临床治疗脊髓损伤的应用奠定基础。方法 (1)制备胶原与壳聚糖配比为3:1的凝胶复合材料,置于真空冻干机冷冻干燥得到多孔可降解的胶原-壳聚糖支架(scaffolds S);(2)选取成年雌性SD大鼠30只,体质量250~300 g,随机分为3组,暴露脊髓后未损伤脊髓为空白对照组(SHAM),采用挂线法离断脊髓后未放入支架为离断损伤组(SCI)和采用挂线法离断脊髓后植入胶原-壳聚糖支架为支架组(SCI+S);(3)术后每周采用双盲法通过Basso-Beattie-Bresnahan(BBB)评分评价各组大鼠后肢运动功能的恢复;分别在术后即刻、术后1个月和术后2个月分别检测各组大鼠(n=5)双后肢运动电生理(motor evoked potentials,MEP)活动;(4)术后8周取材,石蜡切片观察HE染色;冰冻切片观察神经丝蛋白(neurofilament,NF)免疫荧光染色情况。结果挂线法将缝合线穿过暴露的脊髓底部,提拉起脊髓后用手术剪刀离断,确保彻底离断脊髓组织。离断瞬间大鼠双下肢剧烈抽搐数次后各个关节松弛,无牵拉反射,提示造模成功。术后1个月和术后2个月,SCI+S组大鼠的MEP电生理活动、BBB评分结果均明显优于SCI组。HE染色结果发现SCI+S组损伤后形成的空洞明显少于SCI组大鼠;NF免疫荧光结果发现SCI+S组相对于SCI组更有利于脊髓损伤后的神经再生和修复。结论孔胶原-壳聚糖支架减轻脊髓损伤后空洞的形成并促进神经纤维及轴突再生及后肢运动功能恢复,是一种具有良好应用前景的治疗脊髓损伤的支架。
关键词(KeyWords): 脊髓损伤;组织工程;胶原蛋白;壳聚糖;支架;运动功能恢复
基金项目(Foundation): 邯郸市科学技术研究与发展计划项目(编号:16232080634)
作者(Authors): 朱旭;于国渊;杨华堂;张宁;王喜旺;王晶;王如科;
参考文献(References):
- [1] ALKABIE S,BOILEAU A J.The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury--A Systematic Review[J].World Neurosurg,2016,86:432-449.DOI:10.1016/j.wneu.2015.09.079.
- [2] NOMURA H,TATOR C H,SHOICHET M S,et al.Bioengineered strategies for spinal cord repair[J].J Neurotrauma,2006,23(3/4):496-507.DOI:10.1089/neu.2006.23.496.
- [3] SCHWAB J M,BRECHTEL K,MUELLER C A,et al.Experimental strategies to promote spinal cord regeneration--an integrative perspective[J].Prog Neurobiol,2006,78(2):91-116.DOI:10.1016/j.pneurobio.2005.12.004.
- [4] 段雅琴,毛容秋.心率变异性指标在急性脊髓损伤患者自主神经功能中的评估价值[J].中国实用神经疾病杂,2020,23(14):1252-1256.DOI:10.12083/SYSJ.2020.14.284.
- [5] 秦建英,陈清汉.胸椎压缩性骨折伴脊髓损伤患者血清Fbg TNF-α Neuritin水平与神经功能的关系[J].中国实用神经疾病杂,2020,23(6):540-544.DOI:10.12083/SYSJ.2020.06.036.
- [6] RASPA A,PUGLIESE R,MALEKI M,et al.Recent therapeutic approaches for spinal cord injury[J].Biotechnol Bioeng,2016,113(2):253-259.DOI:10.1002/bit.25689.
- [7] LANGER R S,VACANTI J P.Tissue engineering:the challenges ahead[J].Sci Am,1999,280(4):86-89.DOI:10.1038/scientificamerican0499-86.
- [8] AHMED M,RAMOS T,WIERINGA P ,et al.Geometric constraints of endothelial cell migration on electrospun fibres[J].Sci Rep,2018,8(1):6386.DOI:10.1038/s41598-018-24667-7.
- [9] OBERPENNING F,MENG J,YOO J J,et al.De novo reconstitution of a functional mammalian urinary bladder by tissue engineering[J].Nat Biotechnol,1999,17(2):149-155.DOI:10.1038/6146.
- [10] KONIG F,HOLLWECK T,PFEIFER S,et al.A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization[J].J Functi Biomater,2012,3(3):480.DOI:10.3390/jfb3030480.
- [11] STRALEY K S,FOO C W,HEILSHORN S C.Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries[J].J Neurotrauma,2010,27(1):1-19.DOI:10.1089/neu.2009.0948.
- [12] BRADBURY E J,MCMAHON S B.Spinal cord repair strategies:why do they work?[J].Nat Rev Neurosci,2006,7(8):644-653.DOI:10.1038/nrn1964.
- [13] FARRELL K,JOSHI J,KOTHAPALLI C R.Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery[J].J Biomed Mater Res A,2017,105(3):790-805.DOI:10.1002/jbm.a.35956.
- [14] DUAN H,LI X,WANG C,et al.Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury[J].Acta Biomater,2016,45:182-195.DOI:10.1002/jbm.a.35956.
- [15] LI G,CHE M T,ZHANG K,et al.Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration,attenuates inflammation,and induces cell migration in rat and canine with spinal cord injury[J].Biomaterials,2016,83(8):233-248.DOI:10.1016/j.biomaterials.2015.11.059.
- [16] LOH Q L,CHOONG C.Three-dimensional scaffolds for tissue engineering applications:role of porosity and pore size[J].Tissue Eng Part B ReV,2013.19(6):485-502.DOI:10.1089/ten.TEB.2012.0437.
- [17] VISAVADIYA N P,PATEL S P,VANROOYEN J L,et al.Cellular and subeellular oxidative stress parameters following severe spinal cord injury[J].Redox Biol,2015,30(8):59-67.DOI:10.1016/j.redox.2015.12.011.
- [18] JACOBI A,BAREYRE F M.Regulation of axonal remodeling following spinal cord injury[J].Neural Regen Res,2015,10(10):1555-1557.DOI:10.4103/1673-5374.167748.
- [19] DENG L X,DENG P,RUAN Y,et al.A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration,synapse formation,and partial recovery of function after spinal cord injury[J].J Neurosei,2013,33(13):5655-5667.DOI:10.1523/JNEUROSCI.2973-12.2013.
- [20] SHRESTHA B,COYKENDALL K,LI Y,et al.Repair of injured spinal cord using biomaterial scaffolds and stern cells[J].Stem Cell Res Ther,2014,5(4):91-102.DOI:10.1186/scrt480
- [21] HELLAL F,BRADKE F.Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury[J].Science,2011,331(6019):928-31.DOI:10.1126/science.1201148.
- [22] LIN P W,WU C H,CHERT C H,et al.Characteriz-ation of cortical neuron outgrowth in two and three-dimensional culture systems[J].J Biomed Mater Res B Appl Biomater,2005,75(1):146-157.DOI:10.1002/jbm.b.30276.
- [23] CHUN Y,KEALEY C P,LEVI D S,et al.An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall[J].J Biomate Appl,2016,31(8):1196-1202.DOI:10.1177/0885328216682691.
- [24] SUN K,LI H,LI R,et al.Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering[J].Eur J Orthop Surg Traumatol,2015,25(2):243-249.DOI:10.1007/s00590-014-1515-z.
- [25] LOH Q L,CHOONG C.Three-dimensional scaffolds for tissue engineering applications:role of porosity and pore size[J].Tissue Eng Part B Rev,2013,19(6):485-502.DOI:10.1089/ten.TEB.2012.0437.
- [26] ZHANG K,FU Q,YOO J,et al.3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel:An in vitro evaluation of biomimetic mechanical property and cell growth environment[J].Acta Biomater,2016,50:154-164.DOI:10.1016/j.actbio.2016.12.008.
- [27] EDWARDS S L,MITCHELL W,MATTHEWS J B,et al.Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament[J].AUTEX Res J,2004,4 (2):86-94.DOI:10.1007/s00402-007-0320-0.
- [28] WEADOCK K S,MILLER E J,BELLINCAMPI L D,et al.Physical crosslinking of collagen fibers:Comparison of ultraviolet irradiation and dehydrothermal treatment[J].J Biomed Mater Res Part A,1995,29(11):1373-1379.DOI:10.1002/jbm.820291108.
- [29] WEADOCK K S,MILLER E J,KEUFFEL E L,et al.Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions[J].J Biomed Mater Res,1996,32(2):221.DOI:10.1002/(SICI)1097-4636(199610)32:2<221::AID-JBM11>3.0.CO;2-M.
- [30] LADET S G,TAHIRI K,MONTEMBAULT A S,et al.Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors[J].Biomaterials,2011,32(23):5354.DOI:1DOI:10.1016/j.biomaterials.2011.04.012.
- [31] LI W,LONG Y,LIU Y,et al.Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering[J].J Biomater Sci Polym Ed,2014,25(17):1962-1972.DOI:10.1080/09205063.2014.965996.